

www.pc1.ma

Chimie (7 points)

Exercice	Question	Éléments de réponse	Barème	Référence de la question dans le cadre de référence
	1.1.	$C_3H_7CO_2H_{(aq)} + H_2O_{(l)} \rightleftharpoons C_3H_7CO_{2(aq)}^- + H_3O_{(aq)}^+$	0,75	- Écrire l'équation de la réaction modélisant une transformation acido-basique et identifier les deux couples intervenants.
	1.2.	Tableau d'avancement	0,5	
	1.3.	Aboutir à : $x_{\text{max}} = 2.10^{-3} \text{ mol}$	0,5	- Dresser le tableau d'avancement d'une réaction et l'exploiter.
	1.4.	Vérification de la valeur de x_{eq}	0,5	- Calculer l'avancement final de la réaction d'un acide avec l'eau, connaissant la valeur de la concentration et du <i>pH</i> de la solution de cet acide, et le comparer à l'avancement maximal.
Chimie (7 points)	1.5.	Aboutir à : $\tau = 8, 7.10^{-2}$	0,25	- Définir le taux d'avancement final d'une réaction et le
(p = 1100)		τ < 1 : Transformation limitée	0,25	déterminer à partir de données expérimentales.
	1.6.	Aboutir à : $K = 1,66.10^{-5}$	0,75	- Donner et exploiter l'expression littérale du quotient de la
			0.7	réaction à partir de l'équation de la réaction; - Savoir que le quotient de réaction $Q_{r,éq}$, associé à l'équation de
	1.7. D 0,5		la réaction, à l'état d'équilibre d'un système, prend une valeur, indépendante des concentrations, nommée constante d'équilibre K .	

الصفحة الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار فرنسية)					
	1.8.	$pK_A \approx 4,78$	0,5	 Écrire et exploiter l'expression de la constante d'acidité K_A associée à l'équation de la réaction d'un acide avec l'eau. Connaître la relation pK_A = -log K_A. 	
	2.1.	$C_3H_7CO_2H_{(aq)} + HO_{(aq)}^- \to C_3H_7CO_{2(aq)}^- + H_2O_{(l)}$	0,5	- Écrire l'équation de réaction de dosage (en utilisant une seule flèche).	
	2.2.	2.2. $V_{B,E} = 10 \ mL$ 0,5			
	2.3.	Aboutir à : $C = 4.10^{-3} \ mol.L^{-1}$	0,5	Foul day la soude and las afoultage de desse	
		Aboutir à : $m(C_4H_8O_2)_{dans10g \ de \ beurre} = 352 \ mg$	0,75	 Exploiter la courbe ou les résultats du dosage. Repérer et exploiter le point d'équivalence. 	
	2.4.	$m(C_4H_8O_2)_{dans100 \ g \ de \ beurre} = 3,52 \ g < 4 \ g$ le beurre n'est pas rance	0,25		

Physique (13 points)

Exercice	Question	Éléments de réponse	Barème	Référence de la question dans le cadre de référence
	1.1.	$\lambda = 2 cm$	0,5	- Exploiter des documents expérimentaux et des données pour déterminer : * une distance ; * un retard temporel ; * une célérité.
	1.2.	$v = 0, 2 \ m.s^{-1}$	0,5	- Connaître et exploiter la relation $\lambda = v.T$.
Exercice 1	1.3.	$\tau = 0.35 \ s$	0,5	- Exploiter la relation entre le retard temporel, la distance et la célérité.
(4 points)	2.1.	$T = 6.10^{-4} \ s$	0,5	- Exploiter des documents expérimentaux et des données pour déterminer : * une distance ; * un retard temporel ; * une célérité.
	2.2.a.	Aboutir à : $\lambda = 20,5 \ cm$	0,5	- Définir une onde progressive sinusoïdale, la période, la fréquence et la longueur d'onde.
	2.2.b.	Aboutir à : $v = 341,7 \text{ m.s}^{-1}$	0,5	- Connaître et exploiter la relation $\lambda = v.T$.

الصفحة 3	RR 27F	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 – عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار فرنسية)

3.1.	Diffraction	0,25	- Exploiter un document ou une figure de diffraction dans le cas des ondes lumineuses.
3.2.	Aboutir à : $\lambda = \frac{a.L}{2.D}$	0,5	- Connaître et exploiter la relation $\theta = \lambda/a$ et connaître l'unité et la signification de θ et λ .
3.2.	$\lambda = 0,633 \ \mu m$	0,25	- Exploiter des mesures expérimentales pour vérifier la relation $\theta = \lambda / a$.

Question	Éléments de réponse	Barème	Référence de la question dans le cadre de référence
1.	86 protons ; 136 neutrons	0,5	- Connaître la signification du symbole ${}_Z^AX$ et donner la composition du noyau correspondant.
2.	Équation de la désintégration ; noyau fils : ²¹⁸ ₈₄ Po	0,5	 Définir les radioactivités α, β⁺, β⁻ et l'émission γ. Écrire l'équation d'une réaction nucléaire en appliquant les deux lois de conservation.
3.	Aboutir à : $E_{lib\acute{e}r\acute{e}e} = \Delta E \simeq 5,68 \text{ MeV}$	0,5	- Calculer l'énergie libérée (produite) par une réaction nucléaire : $E_{libérée} = \left \Delta E \right \ .$
4.1.	$a_0 = 0.6 \text{ Bq}$; $t_{1/2} \simeq 95 \text{ h}$	2 x 0,25	
4.2.	$\frac{a_0}{V} = 600 \text{ Bq.m}^{-3}$	0,25	- Connaître et exploiter la loi de décroissance radioactive et
	$\left \frac{a_0}{V} \right\rangle 400 \text{ Bq.m}^{-3}$	0,25	exploiter sa courbe correspondante.
	1. 2. 3. 4.1.	1. 86 protons ; 136 neutrons 2. Équation de la désintégration ; noyau fils : $^{218}_{84}$ Po 3. Aboutir à : $E_{libérée} = \Delta E \approx 5,68$ MeV 4.1. $a_0 = 0,6$ Bq ; $t_{1/2} \approx 95$ h $\frac{a_0}{V} = 600$ Bq.m ⁻³	1. 86 protons ; 136 neutrons 0,5 2. Équation de la désintégration ; noyau fils : ${}^{218}_{84}$ Po 0,5 3. Aboutir à : $E_{libérée} = \Delta E \approx 5,68 \text{ MeV}$ 0,5 4.1. $a_0 = 0,6 \text{ Bq}$; $t_{1/2} \approx 95 \text{ h}$ 2 x 0,25 4.2. $\frac{a_0}{V} > 400 \text{ Bq.m}^{-3}$ 0,25 4.2. $\frac{a_0}{V} > 400 \text{ Bq.m}^{-3}$ 0,25

Exercice	Question Éléments de réponse		Barème	Référence de la question dans le cadre de référence
	1.	Bobine (b), conducteur ohmique, générateur G ₁ , interupteur, fils de connexion, oscilloscope.	0,5	- Proposer le schéma d'un montage expérimental permettant l'étude de la réponse d'un dipôle RL soumis à un échelon de tension.
Exercice 3 (6,5 points)	2.	Rôle de la bobine	0,25	- Connaître qu'une bobine retarde l'établissement et la rupture du courant et que l'intensité $i(t)$ est une fonction du temps continue et que la tension entre ses bornes est une fonction discontinue à $t=0$.
	3.	Établissement de l'équation différentielle	0,5	- Établir l'équation différentielle et vérifier sa solution lorsque le

سفحة	الم	
	4	RR 27F
4		

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 - عناصر الإجابة - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار فرنسية)

	(, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,
4.	Aboutir à : $I_0 = \frac{E}{R+r}$ et $\tau = \frac{L}{R+r}$	2 x 0,25	dipôle RL est soumis à un échelon de tension.
5.a.	$I_0 = 60 \text{ mA}$; $\tau = 10 \text{ ms}$	2 x 0,25	 Exploiter des documents expérimentaux pour : * reconnaître les tensions observées. * mettre en évidence l'influence de R et de L sur la réponse d'un dipôle RL. * déterminer la constante de temps.
5.b.	Vérification de : $r = 10 \Omega$ et $L = 1 H$	2 x 0,25	 Déterminer les deux caractéristiques d'une bobine à partir des résultats expérimentaux; Connaître et exploiter l'expression de la constante de temps.
5.c.	Aboutir à : $u_b = 0.6 V$	0,5	- Connaître et exploiter l'expression de la tension $u = r.i + L.\frac{di}{dt}$ aux bornes d'une bobine en convention récepteur.
1.	Schéma du montage expérimental	0,5	- Proposer le schéma d'un montage expérimental permettant l'étude des oscillations libres dans un circuit RLC série.
2.	T = 20 ms Aboutir à: $C = 10^{-5} \text{ F}$	0,25	 Exploiter des documents expérimentaux pour déterminer la valeur de la pseudo-période et de la période propre. Connaître et exploiter l'expression de la période propre.
3.	Interprétation de l'allure de la courbe du point de vue énergétique	0,25	- Expliquer, du point de vue énergétique, les trois régimes.
4.	Énergie magnétique ; justification	2 x 0,25	- Connaître et exploiter l'expression de l'énergie magnétique
5.	Aboutir à : $\Delta \mathcal{E} \approx -10^{-4} J$	0,75	 emmagasinée dans une bobine. Connaître et exploiter l'expression de l'énergie électrique emmagasinée dans un condensateur. Connaître et exploiter l'expression de l'énergie totale d'un circuit.
6.a.	Compensation de l'énergie dissipée par effet Joule dans le circuit	0,25	- Connaître le rôle du dispositif d'entretien d'oscillations, qui consiste à compenser l'énergie dissipée par effet Joule dans le
6.b.	$k = 10 \Omega$	0,25	circuit.